4.4.13

Diferencia de conjuntos. Ejercicios Resueltos

Sobre la Diferencia de dos conjuntos en matemáticas.

La diferencia entre dos conjuntos S y T se puede escribir S ∖ T, y significa el conjunto que consta de los elementos de S que no sean elementos de T


Por ejemplo, si S = {1,2,3} y T = {2,3,4}, entonces S ∖ T = {1}, mientras que T ∖ S = {4}.
Se puede ver inmediatamente que la diferncia de conjuntos no es conmutativa.


En esta entrada se explica cómo encontrar la diferencia de dos conjuntos. Vamos a empezar con una definición.

Definición:

Dado el conjunto A y B, se fija la diferencia de estos dos como:
A es el conjunto de todos los elementos de A, pero que esos elementos no pertenezcan al conjunto B.

Podemos también escribir la representación de la diferencia como: A - B


Ejemplo


Encuentra B - A

Tenga en cuenta que esto se refiere a los elementos de B que no están en A

Sea A = {1 naranja, 1 piña, 1 plátano, 1 manzana}

Sea B = {1 naranja, 1 albaricoque, 1 piña, 1 plátano, 1 mango, 1 manzana}

B - A = {1 albaricoque, 1 mango}


Diferencia de conjuntos. Ejercicios Resueltos.





Ejemplo


Encuentra A - B para los conjuntos a continuación:

B = {1, 2, 4, 6}

A = {1, 2, 4, 6, 7, 8, 9}

Los que están en A que no están en B son 7, 8 y 9

A - B = {7, 8, 9}

Ejemplo



Encuentra B - A

A = {x / x es un número mayor que 6 y menor que 10}

B = {x / x es un número positivo menor que 15}

A = {7, 8, 9} y B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

B - A = {1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14}


Las operaciones entre conjuntos. Diferencia de conjuntos







Vamos a establecer lo siguiente:
En este problema 5 - 2 = 3 podría demostrarse o interpretarse como sigue:
A cinco objetos le quitamos dos de ellos y nos quedan tres restantes. De la misma manera que nos encontramos con la diferencia de dos números, podemos ver la diferencia de dos conjuntos. La diferencia de dos conjuntos, escritas a - b es el conjunto de todos los elementos de A que no son elementos de B. La operación de diferencia, junto con la unión e intersección, es una operación de la teoría de conjuntos.

Para ver cómo la diferencia de dos conjuntos forma un nuevo conjunto, vamos a considerar los conjuntos A = {1, 2, 3, 4, 5} y B = {3, 4, 5, 6, 7, 8}. Para ver la diferencia A - B de estos dos grupos, comenzamos por escribir todos los elementos de A, y luego quitar todos los elementos de A que también están como elementos de B.
Esto nos da que la diferencia de los conjuntos A - B = {1, 2}

No deje de ver:

  • Diferencia de conjuntos. Ejercicios ResueltosSobre la Diferencia de dos conjuntos en matemáticas.La diferencia entre dos conjuntos S y T se puede escribir S ∖ T, y significa el conjunto que consta de los elementos de S que no sean elementos de T Por ej… Leer más
  • Union de Conjuntos Ejercicios ResueltosLa unión de Conjuntos.En la teoría de conjuntos, la unión (denotada por ∪) de una colección de conjuntos es el conjunto de todos los elementos de la colección. Es una de las operaciones fundamentales a través … Leer más
  • Interseccion de conjuntos ejercicios resueltosLa Intersección de Conjuntos.Para las matemáticas, la intersección (denotada como ∩) de dos conjuntos A y B es el conjunto que contiene todos los elementos de A que también pertenecen a B (o equivalentemente, tod… Leer más
  • Teoria de Conjuntos Ejercicios ResueltosTeoría de Conjuntos. EjerciciosLa teoría de conjuntos es la rama de las matemáticas que estudia los conjuntos, que son colecciones de objetos. Aunque cualquier tipo de objeto se puede recoger en un conjunto, la … Leer más