3.6.14

EJERCICIOS DE MULTIPLICACIÓN DE MATRICES

EJERCICIOS DE MULTIPLICACIÓN DE MATRICES

Como multiplicar dos matrices:

La multiplicación de matrices se divide en dos categorías generales:

Por un escalar en los que un número se multiplica con cada entrada de una matriz.

Multiplicación de toda una matriz por otra matriz entera, la multiplicación de matrices en ésta entrada se referirá a esta segunda categoría.

¿Qué es la multiplicación de la matriz?

Usted puede multiplicar dos matrices si, y sólo si, el número de columnas de la primera matriz es igual al número de filas de la segunda matriz.

De lo contrario, el producto de dos matrices no está definido.
Las dimensiones de la matriz producto son:

(filas de la primera matriz) × (columnas de la segunda matriz)

EJERCICIO RESUELTO


\begin{pmatrix}
2  &0  \\
4  &6  \\
8  &2
\end{pmatrix}
\begin{pmatrix}
1  &3  \\
5  &7
\end{pmatrix}
=
\begin{pmatrix}
2\cdot 1+0\cdot 5  &2\cdot 3+0\cdot 7  \\
4\cdot 1+6\cdot 5  &4\cdot 3+6\cdot 7  \\
8\cdot 1+2\cdot 5  &8\cdot 3+2\cdot 7
\end{pmatrix}
=
\begin{pmatrix}
2  &6  \\
34  &54 \\
18  &38
\end{pmatrix}

La multiplicación de matrices casi nunca es conmutativa. Veamos que pasa al multiplicar matrices en ambos sentidos.


\begin{pmatrix}
1  &2  \\
3  &4
\end{pmatrix}
\begin{pmatrix}
5  &6  \\
7  &8
\end{pmatrix}
=
\begin{pmatrix}
19  &22  \\
43  &50
\end{pmatrix}
\qquad
\begin{pmatrix}
5  &6  \\
7  &8
\end{pmatrix}
\begin{pmatrix}
1  &2  \\
3  &4
\end{pmatrix}
=
\begin{pmatrix}
23  &34  \\
31  &46
\end{pmatrix}

EJERCICIOS RESUELTOS EN VÍDEO

Introducción: podemos estudiar los conceptos preliminares sobre las matrices y su orden; esto nos permitirá manejar de forma adecuada los conceptos básicos.

Cómo multiplicar matrices

Una matriz es un arreglo rectangular de números, símbolos o expresiones en filas y columnas. Para multiplicar matrices, tendrá que multiplicar los elementos (o números) de la fila de la primera matriz por los elementos de las filas de la segunda matriz. Puede multiplicar matrices en tan sólo unos sencillos pasos que veremos a continuación en el siguiente vídeo.



En términos generales tenemos que la multiplicación de dos matrices no es conmutativa, esto es:

\mathbf{A}\mathbf{B} \neq \mathbf{B}\mathbf{A}

EJERCICIO DE MULTIPLICACIÓN DE MATRICES


\begin{align}
\begin{pmatrix}
{\color{Brown}1} & {\color{Orange}2} &

{\color{Violet}3} \\
{\color{Brown}4} & {\color{Orange}5} &

{\color{Violet}6} \\
{\color{Brown}7} & {\color{Orange}8} &

{\color{Violet}9} \\
\end{pmatrix}
\begin{pmatrix}
{\color{Brown}a} & {\color{Brown}d} \\
{\color{Orange}b} & {\color{Orange}e} \\
{\color{Violet}c} & {\color{Violet}f} \\
\end{pmatrix}
&=
\begin{pmatrix}
{\color{Brown}1} \\
{\color{Brown}4} \\
{\color{Brown}7}  \\
\end{pmatrix}
\begin{pmatrix}
{\color{Brown}{a}} & {\color{Brown}{d}} \\
\end{pmatrix}
+
\begin{pmatrix}
{\color{Orange}2} \\
{\color{Orange}5} \\
{\color{Orange}8}\\
\end{pmatrix}
\begin{pmatrix}
{\color{Orange}{b}} & {\color{Orange}{e}} \\
\end{pmatrix}+
\begin{pmatrix}
{\color{Violet}3} \\
{\color{Violet}6} \\
{\color{Violet}9}  \\
\end{pmatrix}
\begin{pmatrix}
{\color{Violet}c}  & {\color{Violet}f}  \\
\end{pmatrix}
\\&=
\begin{pmatrix}
{\color{Brown}{1a}} & {\color{Brown}{1d}} \\
{\color{Brown}{4a}} & {\color{Brown}{4d}} \\
{\color{Brown}{7a}} & {\color{Brown}{7d}} \\
\end{pmatrix}+
\begin{pmatrix}
{\color{Orange}{2b}} & {\color{Orange}{2e}} \\
{\color{Orange}{5b}} & {\color{Orange}{5e}} \\
{\color{Orange}{8b}} & {\color{Orange}{8e}} \\
\end{pmatrix}+
\begin{pmatrix}
{\color{Violet}{3c}} & {\color{Violet}{3f}} \\
{\color{Violet}{6c}} & {\color{Violet}{6f}} \\
{\color{Violet}{9c}} & {\color{Violet}{9f}} \\
\end{pmatrix}
\\&=
\begin{pmatrix}
{\color{Brown}{1a}} + {\color{Orange}{2b}} + {\color{Violet}{3c}} & {\color{Brown}{1d}} + {\color{Orange}{2e}} + {\color{Violet}{3f}} \\
{\color{Brown}{4a}} + {\color{Orange}{5b}} + {\color{Violet}{6c}} & {\color{Brown}{4d}} + {\color{Orange}{5e}} + {\color{Violet}{6f}} \\
{\color{Brown}{7a}} + {\color{Orange}{8b}} + {\color{Violet}{9c}} & {\color{Brown}{7d}} + {\color{Orange}{8e}} + {\color{Violet}{9f}} \\
\end{pmatrix}.
\end{align}

¿Qué es Matrix?

La multiplicación de matrices no cumple con la propiedad conmutativa. Al Multiplicar A x B y B x A,  se presentan resultados diferentes. La multiplicación de matrices es la operación más útil y más común que se encuentra en las aplicaciones de algunos campos profesionales como la química.


Una matriz es un arreglo de números en filas y columnas que puede ser cuadrada, a menudo rectangular. Se puede establecer las dimensiones como m x n, donde (m) se refieren al número de filas y (n) al número de columnas. Los valores individuales que constituyen una matriz son conocidos como sus elementos, generalmente contemplados en filas y columnas. Como hemos expresado, las matrices tienen una variedad de aplicaciones; por ejemplo en química, también en el ajuste de curvas y en la mecánica cuántica o la teoría de grupos y gráficos moleculares. En la multiplicación de la matriz AxB, el número de columnas de la matriz A debe ser igual al número de filas de la matriz B. La matriz producto resultante tendrá el mismo número de filas que la matriz A y el mismo número de columnas que B.

Matriz identidad multiplicativa

La matriz identidad multiplicativa es una matriz que podemos multiplicar por otra matriz y la matriz resultante será igual a la matriz original.

Propiedades de la multiplicación

1. Cuando trabajamos con matrices, la multiplicación no es conmutativa.

AB ≠ BA

2. la multiplicación de matrices es asociativa. No importa cómo se agrupen tres o más matrices, cuando estas se multiplican, el resultado no cambia.

A(BC) = (AB) C

3. La multiplicación de matrices es asociativa, esto es análogo a la multiplicación algebraica simple. La única diferencia es que se mantenga el orden de la multiplicación.

A(B+C) = AB + AC ≠ (B + C) A = BA + CA

4. Si es una matriz cuadrada, existe un elemento de identidad para la multiplicación de la matriz. Se llama I

IA = IA = A


Las Matrices son ampliamente utilizadas en aplicaciones de gráficos de geometría, física e informática. En muchas aplicaciones es necesario calcular la multiplicación de la matriz 3 x 3.

TEOREMA DEL BINOMIO - Ejercicios resueltos

TEOREMA DEL BINOMIO

El teorema del binomio

El teorema del binomio es un teorema fundamental del álgebra que se utiliza para expandir expresiones de la forma:



donde n puede ser cualquier número.

El teorema del binomio se presenta de la siguiente manera:




pero cuando se comprime se convierte en:







Las ecuaciones anteriores son bastante complicadas, pero vas a entender lo que significa cada componente si nos fijamos en el apartado de combinaciones antes de mirar el teorema del binomio. El resto debería ser más claro en el momento en que haya terminado con esta entrada.

El teorema del binomio es importante porque a medida que n se hace más grande, las expresiones tienden a ser mucho más complicadas.

Por ejemplo:








Como se puede ver, lo anterior es relativamente complicado y necesitaríamos tomar un tiempo para ampliarlo a la forma final, por lo que surge la necesidad de alguna forma de hacer que la expansión   sea mucho más rápida de resolver y que sea también más fácil.

Los coeficientes de cada término en la expresión anterior son:  {1, 6, 15, 20, 15, 6, 1}

y estos se denominan coeficientes binomiales. Estos son también los números que corresponden a la posición 6 en el Triángulo de Pascal

El triángulo de Pascal 



El triángulo de Pascal se refiere a un triángulo de números con cada fila posterior correspondiente al siguiente número entero de cero en adelante. Estos números también resultan ser los coeficientes binomiales

La matemática detrás de triángulo de Pascal es un poco más avanzada, pero el propio triángulo es muy simple. A continuación se muestra el triángulo de Pascal para los primeros números de cero a ocho.

EJERCICIOS DE SUMA Y RESTA DE MATRICES

EJERCICIOS RESUELTOS DE SUMA Y RESTA DE MATRICES

Ejemplo: una matriz con 3 filas y 5 columnas se puede añadir a otra matriz de 3 filas y 5 columnas.
Pero no se podría agregar a una matriz con 3 filas y 4 columnas (puesto que las columnas no coinciden en tamaño)

La suma de matrices es la operación de sumar dos matrices mediante la adición de las entradas correspondientes juntas.

EJERCICIOS RESUELTOS


  \begin{bmatrix}
    1 & 3 \\
    1 & 0 \\
    1 & 2
  \end{bmatrix}
+
  \begin{bmatrix}
    0 & 0 \\
    7 & 5 \\
    2 & 1
  \end{bmatrix}
=
  \begin{bmatrix}
    1+0 & 3+0 \\
    1+7 & 0+5 \\
    1+2 & 2+1
  \end{bmatrix}
=
  \begin{bmatrix}
    1 & 3 \\
    8 & 5 \\
    3 & 3
  \end{bmatrix}

También podemos restar una matriz de otra, siempre que tengan las mismas dimensiones.

A - B se calcula restando elementos correspondientes de A y B, y tiene las mismas dimensiones que A y B. Por ejemplo:


\begin{bmatrix}
 1 & 3 \\
 1 & 0 \\    
 1 & 2
\end{bmatrix}
-
\begin{bmatrix}
 0 & 0 \\
 7 & 5 \\
 2 & 1
\end{bmatrix}
=
\begin{bmatrix}
 1-0 & 3-0 \\
 1-7 & 0-5 \\
 1-2 & 2-1
\end{bmatrix}
=
\begin{bmatrix}
 1 & 3 \\
 -6 & -5 \\
 -1 & 1
\end{bmatrix}

SUMA Y RESTA DE MATRICES

En el siguiente vídeo se consignan más ejemplos de suma y resta con matrices de mayor tamaño ( matrices 3x3)


Matriz: Suma y Resta

Las matrices se pueden sumar o restar la una de la otra solamente si tienen el mismo tamaño, lo que significa que tienen que tener el mismo número de filas y columnas. Esto se debe a que al añadir o restar matrices, los operadores trabajan en las entradas correspondientes de las matrices, de ahí la necesidad del mismo tamaño.

Veamos la forma de la Matrix, como se muestra en estas dos matrices A y B de tamaño 2 x 2









EJERCICIO RESUELTO






     

EJERCICIOS RESUELTOS DE PROGRESION GEOMETRICA

EJERCICIOS DE PROGRESIÓN GEOMÉTRICA

una progresión geométrica que es también conocida como una secuencia geométrica, es sencillamente una secuencia de números, donde cada término después del primero se encuentra multiplicando el anterior por un número fijo distinto de cero llamado la razón común. Ejemplo, la secuencia de 2, 8, 32, 128, ... es una progresión geométrica con razón común de 4. Del mismo modo 10, 5, 2.5, 1.25, ... es una secuencia geométrica con razón común 1/2.

Ejemplos de una secuencia geométrica se pueden establecer con una potencia:  rde un número r fijo, como  2k y 5k

La forma general de una progresión geométrica es:

a,\ ar,\ ar^2,\ ar^3,\ ar^4,\ \ldots

donde r ≠ 0 es la razón común y a es un factor de escala, igual a valor de inicio de la secuencia.

El término enésimo de una progresión geométrica con un valor inicial y razón común r está dada por

a_n = a\,r^{n-1}.

Tal secuencia geométrica también sigue la relación establecida como:

a_n = r\,a_{n-1}  donde n es un entero y  n\geq 1.

Generalmente, para comprobar si una secuencia dada es geométrico, uno simplemente comprueba si las entradas sucesivas en la secuencia de todas tienen la misma relación.

La razón común de una serie geométrica puede ser negativa, lo que resulta en una secuencia alterna, con los números de conmutación de positivo a negativo y viceversa. Por ejemplo

1, -3, 9, -27, 81, -243, ...
es una secuencia geométrica con relación común de -3.

EJERCICIOS RESUELTOS DE PROGRESIÓN GEOMÉTRICA

Presentamos algunos problemas resueltos paso a paso para reforzar y afianzar los procedimientos. El vídeo muestra varios aspectos importantes.



El comportamiento de una secuencia geométrica depende del valor de la razón común.Si la relación común es:

  • Positiva, los términos serán todos del mismo signo que el término inicial.
  • Negativa, los términos se alternarán entre positivo y negativo.
  • Mayor que 1, habrá un crecimiento exponencial hacia el infinito positivo o negativo (según el signo del término inicial).
  • 1, la progresión es una secuencia constante.
  • Entre -1 y 1, pero no cero, habrá decaimiento exponencial a cero.
  • -1, La progresión es una secuencia alterna
  • Menos de -1, para los valores absolutos hay un crecimiento exponencial hacia (sin signo) el infinito, debido a la señal alterna.

PROBLEMAS RESUELTOS DE PROGRESIONES GEOMÉTRICAS

Un resultado interesante de la definición de una progresión geométrica es que para cualquier valor de la razón común, cualquiera de los tres aspectos consecutivos a, b y c tendrán que satisfacer la siguiente ecuación:

b^2=ac

donde b se considera que es la media geométrica entre a y c.

EJERCICIOS RESUELTOS DE PROGRESIÓN ARITMÉTICA Y PROGRESIÓN GEOMÉTICA

Veamos en un mismo vídeo tanto la progresión aritmética como la progresión geométrica y encontrar las semejanzas y las diferencias entre éstas dos secuencias.


Serie geométrica

Una serie geométrica es la suma de los números en una progresión geométrica. Por ejemplo:

2 + 10 + 50 + 250 = 2 + 2 \times 5 + 2 \times 5^2 + 2 \times 5^3. \,

Si tenemos que el primer término (en este caso 2), m el número de términos (en este caso 4), y r sea la constante de que cada término se multiplica por conseguir la próxima cantidad (en este caso 5), la suma está dada por:

\frac{a(1-r^m)}{1-r}

En el ejemplo anterior, si resolvemos con la fórmula planteada, tenemos que:

2 + 10 + 50 + 250 = \frac{2(1-5^4)}{1-5} = \frac{-1248}{-4} = 312.