Menú

PÁGINAS

31.1.14

Aplicación del Teorema de Thales. Ejercicios resueltos

Ejercicios y Aplicación del Teorema de Thales

Comenzaremos estableciendo lo siguiente: Si dos rectas se cortan por varias rectas que sean paralelas, podemos notar que los segmentos determinados en una de las rectas son proporcionales a los segmentos correspondientes en la otra.

Debemos estar atentos que cuando  hablemos del Teorema de Tales o Thales, debemos precisar a cuál nos referimos ya que en realidad existen dos teoremas atribuidos al matemático griego Tales de Mileto.

El primero de se refiere a la construcción de un triángulo que sea semejante a otro existente, recordemos que los triángulos semejantes son los que tienen iguales ángulos.

El segundo desglosa una propiedad esencial de los circuncentros de todos los triángulos rectángulos, recordemos que los circuncentros se encuentran en el punto medio de su hipotenusa.

APLICACIÓN DEL TEOREMA DE THALES

Ejercicio resuelto para colocar en práctica los aspectos teóricos que se nombran en el teorema.


APLICANDO EL TEOREMA DE TALES

Aclaración sobre los dos teoremas de Tales.

Aspectos sobre los triángulos semejantes.

Problema resuelto.



Teorema de Tales

Del primer teorema de Tales establecemos lo siguiente:

Si dos rectas cualesquieras (p y q) se cortan por varias rectas paralelas (AA’, BB’, CC’) los segmentos determinados en una de las rectas (AB, BC) son proporcionales a los segmentos correspondientes en la otra (A’B’, B’C’).


Teorema de Tales - Trigonometría 

Si tres o más paralelas son cortadas por dos o más secantes, la razón de las longitudes de los segmentos determinados en una de las paralelas, es igual a la razón de las longitudes de los segmentos correspondientes determinados por las otras paralelas.